Faraday's Law of Induction Experiment - EX-5541A

EX5541A_MAIN.jpg

Overview

In this experiment designed for use with PASCO Capstone software, a voltage is induced in a coil swinging through a magnetic field. Faraday's Law and Lenz's Law are examined and the energy dissipated in a load resistor is compared to the loss of energy of the coil pendulum.

A rigid pendulum with a coil at its end swings through a horseshoe magnet. A resistive load is connected across the coil and the induced voltage is recorded using a Voltage Sensor. The angle is measured with a Rotary Motion Sensor, which also acts as a pivot for the pendulum. The induced voltage is plotted versus time and angle. The power dissipated in the resistor is calculated from the voltage and the energy converted to thermal energy is determined by finding the area under the power versus time curve. This energy is compared to the loss of energy determined from the amplitude and speed of the pendulum.

Faraday's Law is used to estimate the magnetic field of the magnet from the maximum induced voltage. Also, the direction of the induced voltage as the coil enters and leaves the magnetic field is examined and analyzed using Lenz' Law.

PASCO Advantage:
PASCO Capstone calculates energy and power using the voltage and angle data. The induced voltage and the calculations are plotted in real-time as the coil swings through the magnet.

Plot of induced voltage as coil swings through the magnet.

Buying Guide

1682
SE-8723
Ohaus Triple-Beam Balance (without Tare)
1
Required
Ohaus Triple-Beam Balance (without Tare)   SE-8723

Interface Required

A 550 Universal Interface or 850 Universal Interface is required for use with this product.  Compare the 550 and 850.

Have specific questions or need more information? Contact Teacher and Technical Support.  We're here to help!

Software Required

This product requires or recommends PASCO Capstone for data collection and analysis.